Fundamentals and Applications of Sketch Processing

Part II: State-of-the-Art Research & Applications

Misha & Chenxi

Tracking Samples

Raster Samples

2D Sketches

3D Sketches

Models & Animations

Full Reading List on GitHub

Aims for **broadness**.
Only covers representative papers.

For more:

3D Sketches

Stroke Construction & Drawing Interface

2D Stroke Construction

2D sample sequence

- -(x, y)
- Timestamp
- Pressure
- Tilt

2D stroke representations

- Polylines
- Parametric curves
- Splines
- etc.

[Sketching clothoid **splines** using shortest paths (Baran et al) Eurographics 2010]

3D Stroke Construction

3D sample sequence

- -(x, y, z)
- Timestamp
- Orientation

3D stroke representations

- Tubes
- Calligraphic curves (ribbons)
- etc.

3D Ribbon Construction

3D Ribbon Construction

[AdaptiBrush (Rosales et al) SIGGRAPH 2021]

Drawing Interface

2D Drawing Software

3D Sketching Interface

Chenxi Liu 11

3D Sketching Interface

Open problems...

Chenxi Liu 11

3D Sketching Interface: Analogy to 2D Drawing

[3D-Layers (Yu et al.) SIGGRAPH 2024]

3D Sketching Challenges

Hard to draw mid-air

[Experimental Evaluation of Sketching on Surfaces in VR (Arora et al.) CHI 2017]

Drawing Interface

3D Sketching Interface: Domain-Specific

Drawing Interface

3D Sketching Interface: Domain-Specific

[Cassie (Yu et al.) CHI 2021]

Takeaways

- 2D software is mature with a fixed set of features while 3D hardware,
 interface and practice are still developing.
- Real-time response for sketching & drawing interface.
- Useful tool for your 2D sketch processing toolbox:
 - https://github.com/ilya-baran-personal/cornucopia-lib

More papers:

Working with Raster Sketches

Raster rough sketch

Raster clean sketch

Raster Sketch Cleanup

Vectorization

Unlabeled data

[Learning to Simplify (Simo-Serra et al) SIGGRAPH 2016]

[Mastering Sketching (Simo-Serra et al) SIGGRAPH 2018]

Raster Sketch Cleanup

Ink and erase

[Smart Inker (Simo-Serra et al.) SIGGRAPH 2018]

Working with Raster Sketches

Raster rough sketch

Raster clean sketch

Raster sketch -

Vector sketch

Vectorize Sketches as Graphs

[Topology-driven vectorization of **clean** line drawings (Noris et al.) SIGGRAPH 2013]

Chenxi Liu

Vectorize Sketches as Graphs

Data-based thresholding

Vectorize Sketches as Graphs

[Fidelity vs. Simplicity (Favreau et al.) SIGGRAPH 2016]

Chenxi Liu 24

Vectorize Sketches as Graphs

(b) Hypergraph

(c) Reconstructed curves

$$U(\mathbf{x}) = (1 - \lambda)U_{\text{fidelity}}(\mathbf{x}) + \lambda U_{\text{simplicity}}(\mathbf{x})$$

$$U_{\text{fidelity}}(\mathbf{x}) = \sum_{h \in H_{\mathbf{x}}} \epsilon(h)$$

$$U_{\text{fidelity}}(\mathbf{x}) = \sum_{h \in H_{\mathbf{x}}} \epsilon(h)$$
 $U_{\text{simplicity}}(\mathbf{x}) = \sum_{h \in H_{\mathbf{x}}} \left(1 + \mu \text{Deg}(B_{\mathbf{x}}^h)\right)$

(a) Inpu

Vectorize Sketches as Graphs

Chenxi I

Vectorize Sketches via Frame Fields

[Vectorization via PolyVector fields (Bessmeltsev and Solomon) SIGGRAPH 2019]

[Keypoint-driven vectorization (Puhachov et al.) SIGGRAPH 2021]

Vectorize Sketches via Frame Fields

Vectorization

Complicated sketches in reasonable time

[Deep Sketch Vectorization via Implicit Surface Extraction (Yan et al.)

Chenxi Liu SIGGRAPH 2024]

Vectorize Sketches via Tracing

[Mo et al. SIGGRAPH 2021]

Vectorize Sketches via Tracing

[Mo et al. SIGGRAPH 2021]

Diffusion-Model-Based Sketch Generation

Vectorization

CLIPasso

CLIPascene

LiveSketch

SketchKnitter

Takeaways

- Image-to-image network: Cleanup, keypoint prediction, etc.
- Graph-based discrete steps are necessary for vector outputs.
- Few methods handle overdrawing: [Simo-Serra et al'16, 18ab] (raster), [Favreau et al.'16], [Mo et al.'21].
- Data is scarce: Most learning based methods train on synthetic data or a combination of annotated and unannotated data.
- The newest method uses a bag of components → Simpler and more elegant methods in the future?

More papers:

Tracking Samples

Raster Samples

2D Sketches

Sketch Cleanup & Flat Colorization

Typical Sketches

Sketch Cleanup

Typical Sketches

Sketch Cleanup

Sketch Topology: Cleanup/Simplification/Consolidation

1. Clustering

[Beautification of design sketches using trainable stroke clustering and curve fitting (Orbay and Kara) TVCG 2011]

Artifact: Branching

→ Separation splitting step

[StrokeAggregator (Liu et al.) SIGGRAPH 2018]

[StrokeAggregator (Liu et al.) SIGGRAPH 2018]

User studies don't scale with more cues Hard to estimate density when strokes are few...

[StripMaker (Liu et al.) SIGGRAPH 2023]

Sketch Cleanup

Sketch Topology: Cleanup/Simplification/Consolidation

1. Clustering

2. Fitting

Sketch Cleanup: Fitting

Sketch Cleanup: Fitting

[StrokeStrip (Van Mossel et al.) SIGGRAPH 2021]

Sketch Cleanup: Fitting

Sketch Topology: Flat Colorization/Junction Reconstruction

Sketch Topology: Flat Colorization/Junction Reconstruction

Sketch Flatting: Region Filling

Flat Colorization

(a) Segmentation mask

(b) Trapped-ball segmentation

(c) Our segmentation result

Multiway Graph Cut

[Zhang et al. TVCG 2009]

[Lazybrush (Sýkora et al.) Eurographics 2009]

Sketch Flatting: Region Filling

Flat Colorization

(b) Trapped-ball segmentation

(c) Our segmentation result

[Zhang et al. TVCG 2009]

[Lazybrush (Sýkora et al.) Eurographics 2009]

Flat Colorization

Sketch Flatting: End-to-End

[Sasaki et al. CVPR 2017]

Flat Colorization

Sketch Flatting: End-to-End

Dataset

[Danbooregion (Zhang et al.) ECCV2020]

Neural Networks

- [Zhang et al. CVPR 2021]

Sketch Flatting: Junction Connection

Flat Colorization

Endpoint Extension

 [Fourey et al. Eurographics – [Jiang et al. The Visual 2018]

Endpoint Clustering

Computer 2021]

Junction Classification

[Yin et al. SIGGRAPH 2022]

Our result

Flat Colorization

Sketch Flatting: Hybrid

[FlatMagic (Yan et al.) CHI 2022]

Flat Colorization

Sketch Flatting: Hybrid

Takeaways

- Raster vs Vector: the majority of commercial tools are raster based making it easier for raster methods to get tech-transfered.
- [A Benchmark for Rough Sketch Cleanup (Yan et al.) SIGGRAPH Asia 2020]:
 - Ignoring "varying thickness and weight", "non-shape strokes", "global context".
 - Junctions: "professional artists have trouble creating topologically accurate junctions".

More papers:

Tracking Samples

Raster Samples

2D Sketches

3D Sketches

[OpenSketch (Gryaditskaya et al.) SIGGRAPH Asia 2019]

52

Chenxi Liu

52

[Gryaditskaya et al. SIGGRAPH Asia 2020]

Tracking Samples

Raster Samples

2D Sketches

3D Sketches

Models & Animations

3D Sketches

Samples

- No connectivity
- Inconsistently oriented normals

Ribbons

- With connectivity
- Inconsistently oriented normals
- Hidden parts

Tubes

- With connectivity
- No normals
- Can be lifted sketches

Surface Reconstruction from 3D Samples

[VIPSS (Huang et al.) SIGGRAPH 2019]

Surface Reconstruction from 3D Samples

[VIPSS (Huang et al.) SIGGRAPH 2019]

[Xu et al. SIGGRAPH 2023]

Surface Reconstruction from 3D Samples

[VIPSS (Huang et al.) SIGGRAPH 2019]

[Xu et al. SIGGRAPH 2023]

Surface Reconstruction from 3D Ribbons

[SurfaceBrush (Rosales et al.) SIGGRAPH 2019]

Surface Reconstruction from 3D Ribbons

[SurfaceBrush (Rosales et al.) SIGGRAPH 2019]

Surface Reconstruction from 3D Tubes

[Piecewise-smooth surface fitting onto unstructured 3D sketches (Yu et al.) SIGGRAPH 2022]

Surface Reconstruction from 3D Tubes

Initial mesh from VIPSS

[Piecewise-smooth surface fitting onto unstructured 3D sketches (Yu et al.) SIGGRAPH 2022]

Takeaways

- Sketch lifting is an ill-conditioned problem that requires priors. Using domainspecific priors can reduce the complexity.
- Surface reconstruction from 3D sketches shares many common points as the standard surface reconstruction but also with its own characteristics and challenges.

Tracking Samples

Raster Samples

2D Sketches

3D Sketches

Models & Animations

Sketch-Based Modeling & Animation

3D Modeling and Animation are Time-Consuming

[Teddy (Igarashi et al.) SIGGRAPH 1999]

[Fibermesh (Nealen et al.) SIGGRAPH 2007]

[Ink-and-ray (Sýkora et al.) SIGGRAPH 2014]

[Monster mash (Dvorožňák et al.) SIGGRAPH Asia 2020]

Sketch-Based Modeling: Geometric & CAD Models

[Xu SIGGRAPH'14]

Surfacing Curve Networks

Sketch-Based Modeling: Geometric & CAD Models

[Li SIGGRAPH Asia'20]

[Li SIGGRAPH'22]

CAD Modeling

Sketch-Based Modeling: Domain Specific

Building Models[Nishida SIGGRAPH'16]

Garment Design[Li SIGGRAPH'18]

Liquid Modeling
[Yan SIGGRAPH Asia'20]

Hair Image Synthesis
[Xiao SIGGRAPH Asia'21]

Layered 3D Models

[De Paoli SIGGRAPH'15]

[Nealen et al. SIGGRAPH 2005]

[Kraevoy et al. SBIM 2009]

[Kratt et al. CG Forum 2018]

Diffusion-model-based 3D generation + Sketch edits

[SKED (Mikaeili et al.) ICCV 2023]

"a 3D model of mushroom house"

Diffusion-model-based 3D generation + Sketch edits

[SketchDream (Liu et al.) SIGGRAPH 2024]

Diffusion-model-based 3D generation + Sketch edits

[SketchDream (Liu et al.) SIGGRAPH 2024]

Sketch-Based Animation Control

Preston Blair "Line of action"

Posing

CAN BE USED OVER AND OVER AGAIN TO MAKE THE CHARACTER WALK AS FAR OR AS LONG AS DESIRED.

FOR A HALF-CYCLE, HALF OF THE ACTION (ONE STEP) CAN BE DRAWN, AND THEN THE HANDS, ARMS. LEGS, AND FEET CAN BE SWITCHED FROM SIDE TO SIDE, ESSENTIALLY CREATING A COMPLETE ACTION WITHOUT REDRAWING ALL OF THE BODY AND HEAD POSITIONS.

Animation

Sketch-Based Animation Control: Posing

[The line of action (Guay et al.) SIGGRAPH 2013]

Sketch-Based Animation Control: Posing

[Sketch2Pose (Brodt and Bessmeltsev) SIGGRAPH 2022]

Sketch-Based Animation Control: Animation

[Guay et al. SIGGRAPH 2015]

Sketch-Based Animation Control: Animation

[SketchiMo (Choi et al.) SIGGRAPH 2016]

Sketch-Based Animation Control: Animation

[Tangent-space optimization for interactive animation control (Ciccone et al.) SIGGRAPH 2019]

Takeaways

- Knowledge of sketch-based modeling can be adapted to new areas such as 3D sketching.
- Diffusion-model-based 3D generation can be an interesting direction for sketch-based methods.

More papers:

Tracking Samples

Raster Samples

2D Sketches

3D Sketches

Sketch-Related Vision Tasks

Models & Animations

Sketch-Related Vision Tasks

Sketches under a Vision Len

[Deep learning for free-hand sketch: A survey (Xu et al.) TPAMI 2022]

Sketches under a Vision Len

[Deep learning for free-hand sketch: A survey (Xu et al.) TPAMI 2022]

Sketch-Related Vision Tasks

Datasets

Human-created drawings

- Novice and professional.
- Sketches and doodles.

DifferSketching

Google quick draw

A Benchmark for Rough Sketch Cleanup

Humans gradually refine their sketching strategies for early recognition.

SlowSketch and more from SketchX lab

Datasets

Sketch-Related Vision Tasks

CAD2Sketch

Creative Flow+

Synthetic drawings

- Generated datasets.
- Non-photorealistic rendering methods.

NeuralStrokes

Understanding Sketches: Correspondences

[SketchDesc (Yu et al.) TCSVT 2020]

[SketchZooms (Navarro et al.) CG Forum 2021]

Sketch-Related Vision Tasks

Understanding Sketches: Abstraction

[SEVA (Mukherjee et al.) NeurIPS 2024]

Takeaways

- The majority of current sketch related vision research concentrates on abstract, doodle-like sketches.
- This is partially due to lack of complex and professionally-created data.
- Boundary between graphics and vision sketch related research is being blurred as more methods become learning based.
- It's interesting to see how data synthesis and pre-trained image models guide the future direction.

More papers: