CSC317: Computer Graphics

Lecture instructor: Chenxi Liu

About me

- Postdoc working with Prof. Alec Jacobson
- Completed my PhD program at UBC
- Worked on Vector sketch generation and processing

Working on: Text-to-image generation + Vector graphics

Contact: chenxil.liu@utoronto.ca

Announcement

Assignment 9 is out.

Deadline: November 29

Access to our private HuggingFace space for the duration of the assignment.

What is Text-to-Image Generation?

A task where the goal is to generate an image that corresponds to a given textual description.

[A quick demo...]

What is Text-to-Image Generation?

A task where the goal is to generate an image that corresponds to a given textual description.

[A quick demo...]

The term *computer graphics* describes any use of computers to create and manipulate images.

Timeline of Text-to-Image Generation

A Handwavy Introduction to Diffusion Model

Image Distribution

Generation via Likelihood-Based Models

$$p(\mathbf{x}) = rac{y}{Z}$$
 $\log p(\mathbf{x}) = \log y - \log Z$ Of $\nabla_{\mathbf{x}} \log p(\mathbf{x}) = \nabla_{\mathbf{x}} \log y - \nabla_{\mathbf{x}} \log Z$ Fit this instead

Why is this called diffusion model?

Forward Diffusion Process

1. Sample a random noise image $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

2. Add noise by blending. [This is a designed procedure/a schedule]

1. Sample a random noise image $\mathbf{x}^T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

How do we get this clean image?

1. Sample a random noise image $\mathbf{x}^T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

How do we get this clean image?

1. Sample a random noise image $\mathbf{x}^T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

How do we get this clean image?

1. Sample a random noise image $\mathbf{x}^T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

2. Denoise

1. Sample a random noise image $\mathbf{x}^T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

2. Denoise

1. Sample a random noise image $\mathbf{x}^T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

2. Denoise

Model Fitting

Machine Learning Model?

$$\mathbb{E}_{t,\mathbf{x}^0,\epsilon_t}||\epsilon_{\theta}(\mathbf{x}^t,t)-\epsilon_t||^2$$

Want to fit
$$\nabla_{\mathbf{x}} \log p(\mathbf{x})$$
 with $s_{\theta}(\mathbf{x})$

Want to fit
$$\nabla_{\mathbf{x}} \log p(\mathbf{x})$$
 with $s_{\theta}(\mathbf{x})$

Want to fit $\nabla_{\mathbf{x}} \log p(\mathbf{x})$ with $s_{\theta}(\mathbf{x})$

$$\mathbf{x} \quad q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x}) \quad \tilde{\mathbf{x}}$$

Want to fit $\nabla_{\mathbf{x}} \log p(\mathbf{x})$ with $s_{\theta}(\mathbf{x})$

$$\mathbf{x} q_{\sigma}(\mathbf{\tilde{x}}|\mathbf{x}) \mathbf{\tilde{x}}$$

$$\mathbb{E}_{\tilde{\mathbf{x}},\mathbf{x}}||s_{\theta}(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x})||^{2}$$

Want to fit $\nabla_{\mathbf{x}} \log p(\mathbf{x})$ with $s_{\theta}(\mathbf{x})$

$$\mathbf{x} \quad q_{\sigma}(\mathbf{\tilde{x}}|\mathbf{x}) \quad \mathbf{\tilde{x}}$$

$$\mathbb{E}_{\tilde{\mathbf{x}},\mathbf{x}}||s_{\theta}(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x})||^{2}$$

$$\mathbb{E}_{t,\mathbf{x}^0,\epsilon_t}||\epsilon_{\theta}(\mathbf{x}^t,t)-\epsilon_t||^2$$

Conditional v.s Unconditional

"A photo of a cat perching on a desk"

- More control for users.
 - In contrast, unconditional generative model would need to use random seeds to control the output.
- Empirically, conditional generative models are easier to train and perform better than unconditional ones.

Conditioning Mechanisms

Conditioning Mechanisms

Concatenation

29

Conditioning Mechanisms

Q: Query \mathbf{x}^t ,

K: Key

"y"

V: Value

"y"

Q: Query \mathbf{x}^{t} ,

K: Key

"y"

V: Value

"y"

$$\operatorname{softmax}(\frac{QK^T}{\sqrt{d}})V$$

Q: Query

 $``\mathbf{x}^t"$

K: Key

V: Value

"y"

softmax
$$\frac{QK^T}{\sqrt{d}}$$
)V

Q: Query

 $``\mathbf{x}^t"$

K: Key

"y"

V: Value

"y"

$$\operatorname{softmax}(\frac{QK^T}{\sqrt{d}})V$$

Condition is kept in places where **condition and image is similar**.

Q: Query

 $``\mathbf{x}^t"$

K: Key

"y"

V: Value

"y"

"
$$\mathbf{x}^{t}$$
" + softmax $(\frac{QK^T}{\sqrt{d}})V$

Figure 1: The original synthesized image and three DAAM maps for "monkey," "hat," and "walking," from the prompt, "monkey with hat walking."

Tang et al., "What the DAAM: Interpreting Stable Diffusion Using Cross Attention"

"My fluffy bunny doll."

Hertz et al., "Prompt-to-Prompt Image Editing with Cross-Attention Control"

Text Embedding

Text Embedding

Text Embedding

Questions?

Advanced Diffusion-Model-Based Editing Tools

Image-to-Image Methods

Image-to-Image Methods: Image Variances

Image-to-Image Methods: Image Variances

Image-to-Image Methods: ControlNet

Image-to-Image Methods: Inpaint/Outpainting

Image-to-Image Methods: Identity

^{*} Based on Fig. 1, Ruiz et al., "DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation"

Image-to-Image Methods: Identity

^{*} Based on Fig. 1, Ruiz et al., "DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation"

Strengths & Weaknesses

1. Quick generation of complex, high-quality realistic and artistic images; good for creative exploration

2. Integrating specific styles

"jacob lawrence painting of san francisco"

2. Integrating specific styles

"frank stella sculpture made of car parts"

2. Integrating specific styles

"a monk riding a snail, medieval illuminated manuscript"

- 1. Following specific instructions (especially when the scene is complex):
 - Composition

"a young dark-haired boy resting in bed, and a grey-haired older woman sitting in a chair beside the bed underneath a window with sun streaming through, Pixar style digital art"

- 1. Following specific instructions (especially when the scene is complex):
 - Composition
 - Generating multiple objects
 - Coloring multiple objects

A yellow bowl and a blue cat

Catastrophic Neglect

One or more subjects are not generated

A yellow bow and a brown bench

Incorrect <u>Attribute Binding</u>

Attributes (e.g., color) not matched correctly to subject

2. Being reasonably unbiased

"lawyer", April 6, 2022 "DALL:E 2 Preview - Risks and Limitations" by OpenAl

2. Being reasonably unbiased

"nurse", April 6, 2022 "DALL·E 2 Preview - Risks and Limitations" by OpenAl

Where is bias from

The Bias ML Pipeline by Meg https://huggingface.co/meg

How to be better

Bias can never be fully removed.

- 1. Task definition stage
 - How ML techniques are integrated into the system? Is a ML model biased in a given use case?
 - What is the optimization objective?

2. Dataset selection and curation stage: A significant source of bias

Fig. 1: LAION5B training images: 10 most frequently occurring countries

Fig. 2: LAION5B most frequent job titles, showing unusually large numer of monarchs

- 2. Dataset selection and curation stage
 - Where is the data from? How was the dataset curated? What is the context?
 - Measure the data. Any harmful associations?
 - Document the dataset.
 - Choose the dataset with least bias related harm. Iteratively improve the dataset.

- 3. Model selection and training stage
 - Visualize model outputs.
 - Evaluate against benchmark.
 - Document the model.

Generative Models & Artists

This is a fast evolving topic with many debats and open questions.

Warning: Contents may no longer be the state-of-art or relevant; and nothing presented should be taken as the "fact".

Existing Artist Workflow: A Case Study

"An AI artist explains his workflow" https://www.youtube.com/watch?v=K0ldxCh3cnl

Existing Artist Workflow: A Case Study

Refinement:
Inpainting&Outpainting
Tweaking with traditional
editing and drawing tools

Identify Reconstruction:

Model training

Tweaking with traditional editing and drawing tools

"An AI artist explains his workflow" https://www.youtube.com/watch?v=K0ldxCh3cnl

Open Questions: How to protect artists?

Fig. 5, Shan et al., "Glaze: Protecting Artists from Style Mimicry by Text-to-Image Models"

Open Questions: How to attribute artists?

A significant concern of most participants, surprisingly, is not just the existence of AI art, but rather scraping of existing artworks without permission or compensation.

As one participant stated: "If artists are paid to have their pieces be used and asked permission, and if people had to pay to use that AI software with those pieces in it, I would have no problem."

— Shan et al., "Glaze: Protecting Artists from Style Mimicry by Text-to-Image Models"

Assignment Overview

Grading Policy

This assignment is graded subjectively. We will be lenient.

* You can request remarking if you question the mark

Privately-Hosted Generator

You will receive an invitation email by the end of today.

Contact us if:

- 1. You don't receive the email;
- 2. The queuing becomes too bad.

(We'll switch to better GPU before deadline)

Format

[FEED ME]

Drag & drop either all files or a .zip for a specific task

Be Reasonable

Only use the generator for this assignment. Only submit images generated by our setup.

Awards

We'll pick and frame IHREE "open-ended" or "story" images

Awards

We'll fund the author of the best image to SIC+C+RAPH next year!

Thank you! Questions?

Further Readings

Intro

- Zhu, Xiaojin, et al. "A text-to-picture synthesis system for augmenting communication." AAAI. Vol. 7. 2007.
 https://pages.cs.wisc.edu/~jerryzhu/pub/ttp.pdf
- Mansimov, Elman, et al. "Generating images from captions with attention." arXiv preprint arXiv:1511.02793 (2015).
 - https://arxiv.org/pdf/1511.02793.pdf
- Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." Advances in neural information processing systems 33 (2020): 6840-6851.
 - https://hojonathanho.github.io/diffusion/
- Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat gans on image synthesis." Advances in neural information processing systems 34 (2021): 8780-8794.
 - https://arxiv.org/abs/2105.05233
- Reed, Scott, et al. "Generative adversarial text to image synthesis." International conference on machine learning. PMLR, 2016.
 - https://proceedings.mlr.press/v48/reed16.pdf

A Handwavy Introduction to Diffusion Model

- Weng, Lilian. (Jul 2021). What are diffusion models? Lil'Log.
 https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
- Song, Yang. (May 2021). Generative Modeling by Estimating Gradients of the Data Distribution. Yang Song's blog. https://yang-song.net/blog/2021/score/
- Yang Song's tutorial video.
 https://www.youtube.com/watch?v=wMmqCMwuM2Q

A Handwavy Introduction to Diffusion Model

- Vaclav Kosar. Cross-Attention in Transformer Architecture.
 https://vaclavkosar.com/ml/cross-attention-in-transformer-architecture
 architecture
- Tang, Raphael, et al. "What the daam: Interpreting stable diffusion using cross attention." arXiv preprint arXiv:2210.04885 (2022). https://github.com/castorini/daam
- Hertz, Amir, et al. "Prompt-to-prompt image editing with cross attention control." arXiv preprint arXiv:2208.01626 (2022).
 https://prompt-to-prompt.github.io/

Advanced Diffusion-Model-Based Editing Tools

 Zhang, Lvmin, Anyi Rao, and Maneesh Agrawala. "Adding conditional control to text-to-image diffusion models." *Proceedings* of the IEEE/CVF International Conference on Computer Vision. 2023.

https://github.com/Illyasviel/ControlNet

 Ruiz, Nataniel, et al. "Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.

https://dreambooth.github.io/

Strengths & Weaknesses

- Aaron Hertzmann's blog. Creative Explorations with DALL-E 2.
 https://aaronhertzmann.com/2022/05/25/dall-e.html
- Miranda Dixon-Luinenburg. What DALL-E 2 can and cannot do. https://www.lesswrong.com/posts/uKp6tBFStnsvrot5t/what-dall-e-2-can-and-cannot-do
- Chefer, Hila, et al. "Attend-and-excite: Attention-based semantic guidance for text-to-image diffusion models." ACM Transactions on Graphics (TOG) 42.4 (2023): 1-10.

https://github.com/yuval-alaluf/Attend-and-Excite

Strengths & Weaknesses

- OpenAI. (Jul 2022). DALL-E 2 Preview Risks and Limitations.
 https://github.com/openai/dalle-2-preview/blob/main/system-card.md#bias-and-representation
- Jernite, Yacine, et al. (Aug 2023). Hugging Face Ethics and Society Newsletter 2: Let's Talk about Bias!. Hugging Face Blog. https://huggingface.co/blog/ethics-soc-2

Generative Models & Artists

- "An Al artist explains his workflow"
 https://www.youtube.com/watch?v=K0ldxCh3cnl
- Shan, Shawn, et al. "Glaze: Protecting artists from style mimicry by text-to-image models." arXiv preprint arXiv:2302.04222 (2023).
 - https://arxiv.org/abs/2302.04222
- DGSpitzer Art Diffusion.
 - https://huggingface.co/DGSpitzer/DGSpitzer-Art-Diffusion